
NASA-CR-203061

Parallel Computing 89, Leiden

The Netherlands, August 1989

Some Scheduling Techniques for Numerical Algorithms in a Simulated

Data-Flow Multiprocessor* _ _J _/_ 2 _: _

Paraskevas Evripidou and Jean-Luc Gaudiot_ _ _ ::_ _'

USC/Information Sciences Institute, 4676 Admiralty Way

Marina del Rey, California 90292-6695

_Department of Electrical Engineering - Systems, University of Southern California

Los Angeles, California 90089-0781

While data-flow principles permit the utilization of large-scale multiprocessor systems

with high programmability and good efficienc_they also introduce much overhead at
runtime. In this paper, we have studied an important class of PDE solvers, namely

iterative methods for solving linear systems. Although these methods are inherently

highly sequential, we have found that much parallelism could be exploited by schedul-

ing the iterative part of the algorithms in blocks and by looking-ahead across several
iterations. This approach is general and will apply to other iterative problems. We

have demonstrated by a combination of simulation and analytical methods, that a sim-

ple priority scheduling mechanism would improve resource utilization and yield higher

performance.

1 Introduction

The data-flow model of execution has been proposed as an approach for parallel processing.

Indeed, data-flow principles of execution offer easy programmability and tolerance to high memory

latencies which are inevitable in large scale multiprocessors[1]. However, the optimization know-

how of the yon Neumman model of execution is not readily applicable to the Data-Flow model of

execution. Indeed, new techniques in:

• New and / or modified mathematical Algorithms.

• Efficient coding of new and existing algorithms in the functional / data-flow paradigm.

• Data-flow graph scheduling and optimization.

are necessary to exploit the full potential of the Data-Flow model of execution.

The dynamic Data-flow principles of execution can exploit maximum parallelism as allowed by

data-dependencies. However, they are still very inefficient when it comes to sequential constructs.

Such constructs are encountered very frequently in numerical computing. It is therefore beneficial

to transform sequential constructs into parallel constructs. Such a transformation can be done

at the algorithm level or at the compiler level. In this paper we present one such technique for

transforming sequential loops to parallel loops.

The basic principle of data-flow is execution upon data availability. However, if this is the sole

scheduling criterion and several iterations of a parallel loop are active during execution, then the

"critical path" gets no special treatment. This might result to poor performance and low resource

utilization. To remedy this we propose a priority scheduling mechanism based on the token tag.

"This material is based upon work supported in part by the Defense Advanced Research Project Agency via
NASA Cooperative Agreement No. NCC 2-539 and by the U.S. Department of Energy, Office of Energy Research
under Grant No. DF_,-FG03-87ER25043.

The goal of this paper is to study the effect of block scheduling of iterative algorithms and

priority scheduling at the data-flow graph level. In section 2 we briefly present the block scheduling

transformation. The priority scheduling mechanism is presented and analyzed in section 3, while

concluding remarks are made in section 5.

2 Algorithm Transformation: Block Scheduling

Numerical algorithms are an integral part of scientific computing. Most of the computation

in such applications is done inside loops. Therefore, efficient execution of loop constructs is

desired. Dynamic data-flow principles are particularly efficient in conjunction with the parallel

loop constructs (foralI). However, many numerical algorithms are implemented with sequential

loop constructs (repeat and while). Iterative and direct solvers of llnear systems, a very important

class of operators, for the solution of Partial Differential Equations (PDEs) are examples of such

algorithms. _ _:t

However, such algorithms can become more efficient for'parallel execution if some amount of

look-ahead is employed: a parallel loop (Forall i = 1, n) is inserted inside the sequential loop

(repeat-until). This allows the dynamic data-flow graph to simultaneously unravel a block of n

iterations (block-scheduling) instead of merely one. The basic form of block scheduling with look-

ahead for iterative algorithms is shown in Figure la. Figure lb. shows the traditional sequential

scheduling implementation of such algorithms.

The function expected_number_of_iterations(...) is used to give an initial estimate of the

number of iterations needed. The decision will be based on the nature of the problem and the

convergence rate of the algorithm. The function evaluate_n(...) estimates the number of iterations

needed to achieve the required accuracy, by calculating the "observed" convergence rate of the

algorithm.

This "look-ahea_l" unraveling (or block scheduling) produces more parallelism than the se-

quential loop implementation by allowing maximum pipelining among the iterations (preserves

the sequentiality of the algorithm at the individual element level and not the vector level which

sequential loops artificially impose). The other source of parallelism, which is peculiar to dynamic

data-flow, is from the overhead/synchronization actors introduced by the dynamic interpreter

which does not depend on previous iteration and hence is highly parallelizable.

A more detailed analysis of block scheduling with look-ahead for iterative algorithms, and its

performance enhancement is given elsewhere [2].

n = expected_number_of_iterations(...) *

repeat *

for i=l,n •

begin *

iterative.algo(...) *
end *

check_stopping_criterion(...) •

n = evaluate_n(...) *
until norm_of_error < tol *

repeat

iterative.algo(...)

check-stopping_criterion(...)

until norm_of_error < tol

Figure la. Block scheduling with look-ahead. Figure lb. Sequential scheduling

3 Graph Scheduling Mechanisms

The block-scheduling technique described in the previous section fall into the algorithm trans-

formation and efficient coding optimization categories (mentioned in the introduction). In this

section an optimization at the graph level is presented. In parallel loops (forall i=l,n) the dy-

namic interpreter unravels all n iterations instead of merely one iteration at a time. By doing

that, more parallelism is exploited because we have the overhead/synchronization actors of all n

iterations initiated from the beginning. Also, because of pipelining among successive iterations,

more computation actors are present as allowed by the data dependencies. However, if the basic

data-flow principle of execution, execution-upon-data-availability, is the only scheduling criterion

used, the actors belonging to the actual computation (for the rest of this paper they will be re-

ferred to as computation actors while the rest will be referred to as synchronization actors), get

no special treatment. Therefore, at any given time t, they have to compete with the rest of the

synchronization actors for machine resources. The proba._lity of a computation actor belonging

to iteration i at time t to be allocated a specific resource r is given by:

Ci,,(0 (1)P(i,,.,t) = . t
Ej=I(Sj,,()+ Cj,,(t))

where Sj,_(t) is the number of synchronization actors of iteration j at time t competing for resource

r, and Cj,r(t) is the number of the computation actors, also belonging to iteration j at time t

competing for resource r and finally n is the number of active iterations. In other words, the

numerator of the r.h.s, of equation 1 is the number of computation actors of iteration i waiting

for resource r, and the denominator is the total number of actors waiting for resource r. Therefore,

the expected wait time Er(i) for any computation actor belonging to iteration i to get hold of

resource r at any time t is

E,(i,t) - (P(i,r,t)) -1 _.j=_(Sj,r() + Cj,r(t))
= (2)

Calculating the expected duration of each iteration analytically is not a trivial matter; as demon-

strated by equation 1 and 2, it is very complex to estimate how long it will take to gain access to

a single resource. However it is clear that if the synchronization actors are much more than the

computation actors (per iteration), the expected wait time for a resource will be high. Therefore,

simulations were performed and the termination time of each iteration was recorded. These results

are discussed next.

3.1 Individual Iteration Termination Time

The Jacobi iterative algorithm with the block scheduling techniques described in section 2 was

used for the simulation experiments. The results for 10 and 20 iterations (scheduled in a single

block) are shown in Table 1. The "time" column is the execution time at which each iteration

terminates and the "% " column represents the percentage of the termination time with respect

to the total time. As predicted in the previous subsection, the termination time of the first few

iterations is much higher than the actual computation time required for these iterations. As the

number of actors increases (n=20), so does the termination time for the early iterations. Although

the percentage is a bit lower, the absolute termination time roughly doubles. The long lifetime of

the early iteration means that the "synchronization/overhead" actors of the latter iterations are

getting hold of the machine resources even when computation actors of the early iterations are

also needing the same resources.

3.2 The Scheduling Algorithm

The block scheduling implementation is motivated by the fact that otherwise idle processors can be

kept busy by dealing with future iteration actors. The results of the previous section suggest that

the actors of the future iterations are actually competing with the actors of the current iteration.

This results in extending the lifetime of the early iterations. Therefore, some sort of priority

scheduling is needed to ensure that the early iterations are not delayed. A good candidate to be

used as a priority field is the tag associated with each token. The u.e.s.i. 1 tag can be mapped by

a one-to-one mapping f : tag _ N. This means that by sorting the tags of the tokens in the firing

queue (or any other queue), we can guarantee that the critical path is not delayed. However,it is

not necessary to observe such a strict ordering, which in fact mimics the yon Neumman model of

execution. It is sufficient to "try" to give preference to the actors which will be needed first.

If no such strict priority is required then, the preference to tokens expected to be needed first

can be enabled by using the iteration part i of the tag u.c.s.i, of the outermost level. Whether

a loop is incrementing (For i=i0,n where n> i0) or decr_tmenting (do i=n,i_ where n> in) the

iteration part i of the tag is always incrementing. Therefore, if tokens with lower iteration values

have priority over other tokens with higher iteration values, the competition for resources remains

among themselves. In short, the scheduling mechanism is:

Tokens with lower tag iteration identifier i at the outermost level of their tag have

priority over other tokens.

This scheduling policy works well with various kinds of loop constructs. However, more com-

plex analyses and policies may be required for more complex graphs.

3.3 Individual iteration Termination Time with Scheduling

As a first step in evaluating the performance of the priority mechanism the same set of experi-

ments as the ones in section 3.1 were performed. Figure 1 gives a graphic representation of both

observations by comparing the termination time vs the number of iterations for the 16 PE con-

figuration for n=10,20. These results suggest that the priority mechanism not only has spread

the termination time of individual iterations more evenly but also has reduced the total execution

time. The comparison of the lifetime of the individual iterations for n = 10 and n = 20 for the

same problem and number of PEs suggests that the priority mechanism makes the lifetime of

individual iterations almost independent of the total number of iterations active in the system.

This is in sharp contrast with the results obtained without the priority scheduling mechanism.

The results presented in this section show that the proposed priority scheduling is reducing

the expected lifetime of the early iterations. This reduction means that the computation actors

(which are the last actors to be executed in each iteration) of the early iterations are now executed

earlier. These actors represent the actual data dependencies of the algorithm. Therefore the overall

execution now is better balanced. This in turn reduces the overall execution time.

Figure 2 shows the plots for 8 x 8 and 32 × 32 for both the sequential implementation of

Jacobi and the block scheduling with look-ahead and the priority mechanism enforced. The block

scheduling outperforms the sequential implementation throughout the whole space.

Overall the simulation results show that the proposed block scheduling to the algorithm and the

priority mechanism provide very good enhancement to the performance of the iterative algorithms.

For "real life" problems with problem sizes in the range of 103-104 [4] the enhancement in speedup

is expected to be much higher.

1The interested reader can refer to [3] for details about the U-interpreter's tag structure

Iter. 2 PEs 16 PEs 64 PEs

n=-10 n=20 n-----10 n=20 n=10 n=20
Time % Time % Time % Time % Time % Time %

1 68076 88.73 124144 81.43 11299 75.59 20799 72.60 5730 62.19 10253 58.23

2 69248 90.26 133909 87.83 11753 78.63 21497 75.04 6135 66.60 10638 60.42

3 70270 91,59 134920 88.49 12183 81.50 21904 76.46 6545 71.04 11033 62.66

4 71508 93.20 136042 89.23 12576 84.13 22318 77.91 6922 75.13 11412 64.82

5 72322 94.26 136931 89.81 12988 86.89 22726 79.33 7319 79.44 11809 67.07

6 73523 95.83 138395 90.77 13388 89.56 23135 80.76 7721 83.81 12208 69.34

7 74247 96.77 139428 91.45 13813 92.41 23506 82.05 8092 87.83 12612 71.63

8 75166 97.97 140526] 92.17 14220 95.13 23860 8329 8464 91.87 12985 73.35

9 76406 99.59 141292 92.67 14610 97.74 24268 84.71 8871 96.29 13357 75.86

10 76723 lO0.O0 142740 93.62 14948 100.00 24663 86.09 9213 100.00 13743 78.05

iI 143627 94.20 25092 87.59 14162 80.43

12 145173 95.22 25471 88.91 14568 82.74

13 145853 95.66 25900 90.41 14982 85.09

14 146975 96.40 26297 91.80 15338 87.11

15 148049 97.10 26671 93.10 15705 89.20

16 148892 97.66 270_8 94.52 16094 91.41
17 150018 98.40 27512_ 96.04 16477 93.58

18 150833 98.93 27893 97.37 1.6872 95.83

19 151990 99.69 28314 98.84 17264 98.05

20 152464 100.00 28647 100.00 17.607 I00.00

Table 1: Termination time of Jacobi with block scheduling, solving a 16x16 linear system

The experiments described in this paper dealt exclusively with iterative algorithms for solving

linear systems. However, data-dependencies among successive iterations are found in many other

classes of algorithms as well. For example, in direct methods for solving linear systems (Gaussian

elimination, etc.), data-dependencies among successive iterations also exist. Therefore, both the

block scheduling technique at the algorithm level and the priority scheduling at the graph level

can be useful in raising performance levels. The priority scheduling technique, in particular, can

also improve the efficiency of parallel constructs. The dynamic data-flow principles allow for the

complete unraveling of such constructs. However, this massive parallelism might overloads machine

resources and even result in deadlocks. To remedy this, throttling techniques are employed to limit

the amount of run-time parallelism. Loop throttling (or k-bounded loops) [5] is one such technique

which allows at most k iterations to exist at any time. When iteration i finishes iteration i + k is

activated. However, the results of section 3.1 point out that if k iterations are active the lifetime

of the early iterations is greatly increased which underutilizes the machine resources. Therefore,

the priority scheduling mechanism described here can enhance the performance of such throttling

' techniques or even replace them in certain environments.

4 Concluding Remarks and Future Research

In this paper, we have presented scheduling techniques for iterative algorithms at both the high

level implementation of iterative algorithms and at the low level of the dynamic data-flow graph.

At the algorithm level, we have inserted a parallel loop inside the sequential loop, found in all con-

ventional implementations of iterative algorithms. This triggers a more efficient "block" execution

which overcomes much of the overhead traditionally associated with data-flow computations by

enabling the parallel execution of the synchronization part of the graph which has no dependencies

among iterations. Also, it allows maximum pipelining among the computation part of successive

iterations. Furthermore, it allows saving computations on the termination criterion by employing

"look-ahead:" The algorithm predicts how many more iterations are needed and initiates them in

10 3 Sim. Time

30i 28

26

24

22

2O

18

161

12'

10'

8'
6' 10

4

2 ,: n=20, Pri. Sch.

½ _1 6 8 1'0 1'2 1'4 1:6 18' Iter.

Figure 1: Iterations's Termination time

spee

28

24 ¸

2O

16

12

8

4

]up

Io: 8x8 Seq. Sch. I
]o: 8x8 Blk. & Pri. Sch. I_
[o 32x32 Seq. Sch.

I®: 32x32 Blk_. I.

: : :8:: ;1:6:::2:4:: : : :is:: : PEs

Figure 2: Speedup vs number of processors

a block fashion. Thus, the stopping criterion is checked when the whole block terminates, rather

than at the end of each iteration which the traditional implementations do. It has also been ob-

served that the execution-upon-data-availability principle results in an "anarchy" in the scheduling

of operations by favoring the numerous "low-yield" operations "overhead/synchronization" actors.

In order to make sure that the computation work would be performed immediately, possibly at

the expense of overhead work in higher iterations, we have hence developed a hierarchical schedul-

ing mechanism which tends to give higher priority to the execution of instructions in the lower

iterations. Simulation results show that the scheduling mechanism reduces the lifetime of the indi-

vidual iterations. This yields a considerably better resource utilization and faster execution. As a

direct combined effect of block scheduling and priority scheduling, an even higher performance is

achieved. We are currently investigating the effect of the scheduling techniques presented here on

other types of algorithms, like the Gaussian elimination and multigrid techniques. Future research

will strive towards a general framework based on the block scheduling technique which extracts

parallelism from sequential constructs without specific knowledge about the problem. Also the

, priority scheduling technique will be incorporated into a more general resource utilization policy.

References

[1] Arvind and R. A. Iannucci. Two Fundamental Issues in Multiprocessing. In Parallel Computing

in Science and Engineering. Springer-Verlag, June 1987.

[2] P. Evripidou and J-L. Gandiot. Iterative algorithms in a data-driven environment. In Pro-
ceedings of the 1988 International Conference on Parallel Processing, August 1988.

[3] Arvind and K.P. Gostelow. The U-Interpreter. IEEE Computer, pages 42-49, February 1982.

[4] Birkhoff and Lynch. Numerical Solutions o] Elliptic Problems. SIAM studies in Applied Math,
1984.

[5] Arvind and R.S. Nikhil. Executing a program on the MIT Tagged-Token Dataflow Architec-
ture. In Parallel Architectures and Languages Europe. Springer-Verlag, August 1987.

